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ORIGINAL RESEARCH

Cofitness network connectivity determines a fuzzy
essential zone in open bacterial pangenome

Pan Zhang1,2,3,# , Biliang Zhang2,4,#, Yuan‐Yuan Ji1,2, Jian Jiao1,2, Ziding Zhang4,*, and Chang‐Fu Tian1,2,*

Abstract

Most in silico evolutionary studies commonly assumed that core genes are essential for cellular function, while accessory
genes are dispensable, particularly in nutrient‐rich environments. However, this assumption is seldom tested genetically within
the pangenome context. In this study, we conducted a robust pangenomic Tn‐seq analysis of fitness genes in a nutrient‐rich
medium for Sinorhizobium strains with a canonical open pangenome. To evaluate the robustness of fitness category as-
signment, Tn‐seq data for three independent mutant libraries per strain were analyzed by three methods, which indicates that
the Hidden Markov Model (HMM)‐based method is most robust to variations between mutant libraries and not sensitive to data
size, outperforming the Bayesian and Monte Carlo simulation‐based methods. Consequently, the HMM method was used to
classify the fitness category. Fitness genes, categorized as essential (ES), advantage (GA), and disadvantage (GD) genes for
growth, are enriched in core genes, while nonessential genes (NE) are over‐represented in accessory genes. Accessory ES/GA
genes showed a lower fitness effect than core ES/GA genes. Connectivity degrees in the cofitness network decrease in the
order of ES, GD, and GA/NE. In addition to accessory genes, 1599 out of 3284 core genes display differential essentiality
across test strains. Within the pangenome core, both shared quasi‐essential (ES and GA) and strain‐dependent fitness genes
are enriched in similar functional categories. Our analysis demonstrates a considerable fuzzy essential zone determined by
cofitness connectivity degrees in Sinorhizobium pangenome and highlights the power of the cofitness network in under-
standing the genetic basis of ever‐increasing prokaryotic pangenome data.
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Impact statement
Core and accessory genes in the pangenome are hypothesized to be essential and dispensable, respectively, for prokaryote
fitness under nutrient‐rich conditions. This bipartition view has been widely referenced in genomic studies but not effectively
tested. By using network analysis of pangenomic Tn‐seq data of sibling Sinorhizobium strains under a nutrient‐rich con-
dition, this work not only revealed a positive correlation of gene fitness categories with both gene conservation levels and
network connectivity degrees but also uncovered an enrichment of both shared and strain‐dependent fitness genes in
essential cellular functions, for example, translation and cell envelop biogenesis. This work highlights the importance of
network rewiring in shaping the strain‐dependent fuzzy essential zone of the prokaryote pangenome.

INTRODUCTION
In the essence of the biological species concept, reproductive
isolation or, more generally speaking, independent evolution is
considered to be virtually synonymous with the process of
speciation1. For prokaryotes, the recombination rate declines

with increased sequence divergence, and the number of docu-
mented species has been significantly enlarged by computing
average nucleotide identity (ANI) in the scenario of alpha
taxonomy in the past decades2–5. However, a ubiquitous
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biological species concept for prokaryotes has been
questioned4,5, largely due to the fact that genetic differences
between populations or species could be eroded by
promiscuous lateral gene transfer events4,6. This evolutionary
dilemma regarding prokaryote species is tentatively solved by
the split of pangenome into core genes shared by all relevant
strains and accessory genes present in a subset of strains, which
manage essential and nonessential cellular processes, re-
spectively7–9. In other words, essential core genes define the
species, while nonessential accessory genes confer adaptation
potential in ever‐changing circumstances7,10. It has been widely
accepted that essential (ES) genes are those more conserved
and irreplaceable members11,12, which inspire the ongoing pur-
suit of the minimal genome for model organisms in the context of
synthetic biology13–15. However, it remains elusive
how pangenomes evolve10,16–18, which determine the fitness of
organisms in various habitats19.

Increasing in silico analyses of pangenome for a phylo-
genetic clade, usually a genus or species, support a hy-
pothesis of adaptive evolution of pangenome at both gene
and organism levels17,18,20,21. Comparative transcriptomic
studies in the pangenome context suggest that various ac-
cessory functions are usually integrated with the core regu-
lation network at different extents, that is, the more
conserved genes show a higher average transcription level
and a higher connectivity degree in coexpression networks
than those of less conserved ones16,22,23. A fuzzy essential
zone, composed of strain‐specific ES genes, of pangenome
can be hypothesized when different sibling strains are com-
pared, but direct empirical evidence is still rare.

A global coexpression network shows potential crosstalk
patterns between biological pathways at the expression level,
while a related genetic interaction network is investigated by
reverse and/or forward genetic procedures. Transposon in-
sertion sequencing (Tn‐seq) can be used to massively charac-
terize genes of unknown function among distantly related
bacteria across dozens of growth conditions24,25. Particularly,
bacterial fitness genes involved in pathogenic or beneficial
interactions with various eukaryotes have been intensively in-
vestigated for a single strain26, for example, antibiotic resistance
genes of human pathogens27–29, and colonization determinants
of human pathogens30, gut symbionts in honey bees31, plant
symbionts32,33, plant growth promotion bacteria34–36, and plant
pathogens37,38. Several Tn‐seq analyses have been performed
on two or more sibling pathogenic strains to define a core set of
ES genes or condition‐dependent ones28,29,39, aiming for iden-
tifying novel drug targets. Genes participating in the same bio-
logical processes tend to genetically interact with common sets
of other genes within distinct but related pathways, leading to the
emergence of strongly correlated genetic interaction profiles
across a wide array of genetic backgrounds. The exploration of
genetic interaction networks in model organisms has been a
longstanding approach to unveil functional associations between
genes or their corresponding gene products40,41. The cofitness
network42, which represents a kind of genetic interaction net-
work, adopts a construction method similar to the coexpression
network, except that it uses the fitness values of genes for

different growth conditions. However, co‐essentiality network
and strain‐dependent network rewiring have not been well‐
studied in a pangenome context. A related term, “network re-
wiring”, referring to the inherent reorganization of interactions
between biological components due to conditional changes, has
become widely adopted43–46. It is a fundamental characteristic of
most, if not all, biological networks. The network rewiring can
have a profound impact on alterations in gene essentiality since
the rewiring of interactions facilitates the integration of genes into
new pathways, thereby heightening the likelihood of their en-
gagement in crucial biological processes46,47. Thus, examining
genetic network rewiring within a single strain helps us under-
stand how that strain copes with environmental fluctuations
while exploring genetic network rewiring among sibling strains
can provide insights into pangenome evolution.

In this work, we aimed to investigate the putative fuzzy es-
sential zone of closely related bacteria from both functional and
evolutionary points of view. To this end, we characterized
genes as ES, advantage (GA), disadvantage (GD), or non-
essential (NE) genes for the growth of five sibling strains of
Sinorhizobium representing one of the best‐studied bacterial
genera of open pangenome48,49. Sinorhizobium members,
living saprophytically in soils as other rhizobia, can occasionally
form nitrogen‐fixing nodules on diverse legumes such as the
Sinorhizobium fredii‐soybean and Sinorhizobium meliloti‐alfalfa
pairs50,51. Sinorhizobium species are characterized by their
similar multipartite genomes22,52,53 and diverged earlier than
the innovation of legume nodules23,54. To minimize the sys-
tematic error, the Himar1 mariner transposase gene driven by a
Sinorhizobium rpoD promoter was used in the construction of
three independent mutant libraries for each strain, and Tn‐seq
data from 15 independent libraries from five strains were ana-
lyzed by Hidden Markov Model (HMM)55, Bayesian56, and
Monte Carlo simulation‐based methods57, respectively. The
fuzzy essential zones identified by the most robust method
were subject to cofitness network analysis and enrichment
analyses of pangenome subsets and functional categories in
the pangenome context of 17 Sinorhizobium species. This work
revealed a positive correlation between gene essentiality
grades with both gene conservation levels and network con-
nectivity degrees. Core and accessory ES/GA genes showed
different function enrichment profiles, while core ES/GA genes
exhibited an enrichment of both shared and strain‐dependent
fitness genes in essential cellular functions, for example,
translation and cell envelop biogenesis. These findings highlight
the importance of network rewiring in shaping the strain‐
dependent fuzzy essential zone of prokaryote pangenome.

RESULTS AND DISCUSSION
HMM‐based method shows superior robustness
against variations among Tn‐seq data from
independent mutant libraries
Stochastic differences among independent mutant libraries can
affect the robustness of conclusions and have received in-
creasing attention, particularly when comparing independent
Tn‐seq studies58,59. In this work, themariner transposon known
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to have little sequence specificity beyond the exact insertion
into thymine‐adenine dinucleotide (TA) sites60 was used to
generate three independent mutant libraries for each test strain.
This allowed systematic evaluation of insertion efficiency with
available information on genome TA sites and stochastic dif-
ferences among independent libraries. To assure efficient
transposition in test Sinorhizobium strains, the mariner‐carrying
pSAM_Bt vector developed earlier61 was retrofitted with a ka-
namycin resistance cassette from pRL1063a62 and the rpoD
promoter from S. fredii CCBAU45436 to create pSAM_Sf
(Figure S1). Three independent mutant libraries (each library
with around 700,000–1,000,000 colonies) for each of five test
Sinorhizobium strains were individually constructed in tryptone‐
yeast extract (TY) medium, which is a nutrient‐rich medium
routinely used for rhizobial growth63. These strains, including
S. fredii CCBAU45436 (SF45436), S. fredii CCBAU25509
(SF25509), S. fredii NGR234 (SF234), Sinorhizobium sp. III
CCBAU05631 (SS05631) and S. meliloti 2011 (SM2011) repre-
sent three lineages from Sinorhizobium (Figure 1A), and their
complete genomes were obtained earlier22,23,64,65. Pangenome
members of the five test strains can be assigned into three

subsets (Figure 1B) of the Sinorhizobium pangenome based on
19 strains (Figure 1A): subset I, gene homologs present in 19
Sinorhizobium strains; subset II, those shared by at least two
strains excluding subset I; subset III, the remaining accessory
genes of each strain. The 15 independent mutant pools from
three independent mutant libraries were subject to an adapted
version of the Tn‐seq method (Figure 1C). The number of TA
sites in individual genomes ranged from 106,040 to 115,384,
and 52.89%–87.09% of available TA sites were detected with
insertions by the mariner transposon among 15 samples
(Supporting Information: Data S1‐1). These insertion frequency
values are all above the current threshold for good libraries
(greater than 50%)66, and showed a strong and moderate
positive correlation with the number of detected unique in-
sertions (Spearman r= 0.97, p< 0.001) and total insertions
(Spearman r= 0.54, p< 0.01; Figure 2A), respectively.

To evaluate potential library‐dependent effects on gene
fitness determination, HMM55, Bayesian56, and Monte Carlo
methods57 were used for analyzing Tn‐seq data to identify
ES genes (Figure 2B and Supporting Information: Data S1‐1).
The Bayesianmethod calculates the posterior probability of the

Figure 1. Tn‐seq analysis of Sinorhizobium pangenome. (A) A maximum likelihood phylogenomic tree based on the 1667 core genes shared
by 19 Sinorhizobium strains and an outgroup strain Ensifer adhaerens Casida A. Bootstrap values are all 100. (B) Hierarchical divisions of core/
accessory subsets for the five strains. Subset I, 2187 single‐copy protein‐coding genes shared by the five strains; Subset II, genes shared by at
least two strains excluding subset I; Subset III, strain‐specific genes. (C) Workflow of the Tn‐seq analysis of Sinorhizobium strains. Three
independent mutant libraries were constructed for individual test strains, and then mutant libraries for each strain were individually scraped and
collected to do subsequent genomic DNA extraction and Tn‐Seq sample preparation for sequencing. Hidden Markov Model (HMM), Bayesian,
and Monte Carlo methods were compared and used for analyzing Tn‐seq data.
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longest consecutive sequence of TA sites lacking insertion in a
gene56,66. A considerable library‐dependent variation was ob-
served for the number of ES, uncertain, and NE genes in
SS05631 and SF25509 (Figure 2B and Supporting Information:
Data S1‐1). Although the number of ES genes did not show a
significant correlation with total insertions, unique insertions,
insertions per TA site, or insertion density (Spearman r = −0.17
to −0.05; Figure 2A), individual libraries with less than 25 ES
genes identified for SS05631 (above 84%) and SF25509
(above 86%) are those with the higher insertion density (Sup-
porting Information: Data S1‐1). When data from three in-
dependent libraries were combined, SS05631, SF25509, and
SF45436 with insertion density above 90% had just 17, 20, and
23 ES genes identified by Bayesian method, respectively

(Figure 2B and Supporting Information: Data S1). By contrast,
such inauthentic numbers of ES genes were not observed for
SF234 and SM2011 with insertion density below 78%
(Figure 2B and Supporting Information: Data S1‐1). Therefore,
the Bayesian method may give a false negative report on ES
genes when the insertion density is at a high level. Such great
library‐dependent variation was not observed for the Monte
Carlo method, which instead identified a considerable strain‐
dependent variation in the number of ES genes (Figure 2B). This
strain‐dependent variation could be greatly reduced when data
from three libraries were combined (Figure 2B). This is in line
with the positive correlation between the ES gene number de-
termined by the Monte Carlo method and the number of unique
insertions (Spearman r=0.69, p<0.001; Figure 2A), insertion

(A)

(B)

Figure 2. HMM method is robust for pangenomic Tn‐seq data. (A) Spearman correlation among Tn‐seq variables (from 1 to 4) and essential
gene numbers identified by three methods. Significant correlation coefficient values are indicated in the bottom left of the matrix (*p < 0.05;
**p < 0.01; ***p < 0.001). Only the Monte Carlo method shows a moderate but significant correlation with Tn‐seq variables, including total
insertions, unique insertions, and density. (B) Essential gene number identified by Bayesian, Monte Carlo, and HMM methods. Significant
difference between essential gene numbers in individual mutant libraries (left) and that in combined data (right) is indicated (one sample t‐test;
*p < 0.05; **p < 0.01; ***p < 0.001; ns, p > 0.05). HMM method is robust among Tn‐seq data from independent mutant libraries and not sensitive
to data size.
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density (Spearman r=0.58, p<0.01; Figure 2A), or total in-
sertions (Spearman r=0.47, p<0.05; Figure 2A). These results
are consistent with the fact that the Monte Carlo method uses
“Expected” pseudo‐datasets randomly generated from the pool
of obtained read counts in Tn‐seq57. Notably, the Monte Carlo
method only defines whether a gene is ES or NE, and under the
thresholds of available studies and this work39,67–69, some GA
genes can be included in the ES subset. Indeed, as shown in
Figure S2, it is not rare to observe two peaks within a density
distribution of fitness values for an ES subset defined by the
Monte Carlo method.

The HMM method assigns gene essentiality into ES, GA,
GD, or NE by calculating the likelihood of read counts in each
category based on a geometric distribution55. As shown in
Figure 2B, the HMM method was neither sensitive to sto-
chastic variations among independent libraries as the Baye-
sian method did, nor severely affected by the variation of data
size and insertion density (Spearman r = −0.14 to −0.07) as the
Monte Carlo method did (Figure 2A). This is supported by the
earlier observation that the HMM method can make reason-
able essentiality analysis for Tn‐seq data of insertion density
from dense (above 54%) to sparse (38% and 27%)55. By
analyzing more than 70 independent studies of ES genes in
diverse bacteria from DEG 1570, we are aware of an average
minimal set of 394 ± 36 (95% confidence interval) ES genes in
a bacterial species. Apparently, the HMM method performed
well for both independent libraries and the combined data
(Figure 2B) compared to the other two methods. Con-
sequently, the HMM method and the combined Tn‐seq data
from three libraries of individual strains (insertion density
ranging from 75.5% to 91.6%) were used to define gene fit-
ness categories: ES, GA, NE, and GD. Moreover, these fitness
categories were generally supported by the gene fitness
values calculated by the Monte Carlo method (Figure S2 and
Supporting Information: Data S1), that is, fitness values in-
creased in the order of ES, GA, NE, and GD.

Gene essentiality grades positively correlate
with conservation levels in Sinorhizobium
pangenome
We further explored the relationship between gene fitness
categories and gene conservation levels. Genes within different
pangenome subsets represent genes with different degrees of
conservation (Figure 1B), and gene conservation levels showed
a decrease in the following order: subsets I, II, and III. As ex-
pected, the average fitness values of genes, regardless of
pangenome subset assignments, sequentially increased with
reduced gene essentiality: ES, GA, NE, and GD (Tukey HSD,
α= 0.05; Figures 3A and S2). Among the ES and GA genes, the
average fitness values sequentially increased with gene con-
servation level: subset I, II, and III (Tukey HSD, α= 0.05;
Figure 3A). Within subset I, the average fitness values for 1054
ES genes and 922 GA genes are −6.90 and −5.46, respectively.
These genes with fitness values either above or below the
average are enriched in COG (Clusters of Orthologous Groups)
categories J (translation, ribosomal structure and biogenesis),

H (coenzyme transport and metabolism), F (nucleotide trans-
port and metabolism), L (replication, recombination and repair),
D (cell cycle control, cell division, and chromosome parti-
tioning), U (intracellular trafficking, secretion, and vesicular
transport), and M (cell wall/membrane/envelope biogenesis)
(Figure 3B; Fisher's exact test, p< 0.05). Among 455 ES genes
and 437 GA genes belonging to subset II, those genes with
fitness values below the subset I average (−6.90 and −5.46 for
ES and GA, respectively), rather than those above the average,
are more likely to have function assignment in those COG
categories over‐represented in ES and GA genes of subset I
(Figure 3B), and both ES and GA genes in the subset II have
distinct function enrichment profiles compared to the subset I,
for example, C (energy production and conversion; p< 0.05).
Among 31 ES genes and 78 GA genes belonging to subset III,
few genes have COG assignment and no significant function
enrichment was identified among ES and GA genes (Figure 3B).
Therefore, the function enrichment profile of ES and GA genes
belonging to less conserved subsets II and III can be different
from those of subset I to a certain extent, supporting a strain‐
dependent rewiring of the ES/GA gene network characterized
by its higher average fitness value in subsets II and III than in
subset I.

The subset I was over‐represented in ES, GA, and GD,
while subsets II and III were enriched in NE (Figure 3C,
Fisher's exact test, p < 0.001; Figure S3, Z test, p < 0.01). A
sequential decline of the proportion of subset I genes was
observed in the order of ES, GA, GD, and NE (Figure 3C).
These findings are in line with a dominant role of conserved
pangenome members (subset I)16,71, and highlight an active
integration of strain‐dependent functions (subset II and III)
into the core network. This ensures the growth of different
sibling strains under the same nutrient‐rich condition, sup-
porting the hypothesis of network‐based variation of cellular
organisms during divergence72. Since new nodes and edges
have been added, then how would the core network rewire?

Cofitness network analysis reveals a fuzzy
essential zone of the core genome
In addition to the strain‐dependent innovation of genes es-
sential for growth (Figures 1B and 3), we further charac-
terized the genes shared by five strains with network‐based
methods. Pearson's correlation networks such as weighted
gene coexpression network analysis have been widely used
in systems biology and bacterial pangenomics22,73,74. By
using an analyzing procedure similar to the gene coex-
pression network, the cofitness network was recently in-
troduced in a Tn‐seq analysis of gene fitness values for
Streptococcus pneumoniae under different conditions42. In
this study, we constructed a cofitness network for 3284 core
genes among five strains in a pangenome context
(Figure S4). Briefly, the fitness values of core genes among
five strains obtained by the Monte Carlo method were used
to calculate Pearson's correlation coefficient. Then, the
random matrix theory (RMT)‐based network approach75–78

was used to define the correlation threshold (Pearson's
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r > 0.91) to construct the cofitness network. Pearson co-
efficient is the preferable method for normally distributed
data and the default metric in gene coexpression network
analyses79. Among the five strains, whether divided into four
gene categories by the HMM method or two gene classes by
the Monte Carlo method, their fitness values exhibit a normal
distribution within each strain (Figure S2). In the cofitness
network, a higher correlation between two genes indicates
that their fitness changes consistently across different bac-
teria. Conversely, if a gene exhibits a strain‐dependent es-
sentiality pattern, its degree of correlation is low. Similar to
the coexpression network, a gene with identical fitness

values across strains will make correlation coefficient cal-
culation impossible. Upon examining our data, we found that
none of the genes had identical fitness values across the five
strains. Standard deviation (SD) for fitness values of in-
dividual core genes among five strains ranged from 0.08 to
5.45 (Figure S5A), with the GA category having the highest
SD value, followed sequentially by ES, GD, and NE catego-
ries (Figure S5B).

To better visualize the network, we constructed a network
based on the top 1% of edges with the strongest relevance
(involving 2757 genes), with 1325 genes belonging to the
largest Module_1 that showed a strain‐dependent gene

Figure 3. Essentiality grades correlate with conservation levels in Sinorhizobium pangenome. (A) Multiple comparison tests of the fitness
values between genes of different conservation levels. Error bar represents SD. Fitness values are calculated by the Monte Carlo method. ES
(essential), GA (growth advantage), NE (nonessential), and GD (growth disadvantage) were defined by the HMM method. Fitness values
sequentially increase from subset I to II and III within ES and GA categories. (B) COG (Clusters of Orthologous Groups) enrichment analysis of
ES and GA genes with fitness values (F) above or below the average fitness value of subset I (−6.90 and −5.46 for ES and GA, respectively).
Gene number in a specific COG category belonging to an indicated gene subset is shown, and significant enrichment is indicated by red points
or red numbers compared to the total number of genes with COG annotations in five test strains (Fisher's exact test, p < 0.05). D, cell cycle
control, cell division, chromosome partitioning; F, nucleotide transport and metabolism; G, carbohydrate transport and metabolism; H,
coenzyme transport and metabolism; J, translation, ribosomal structure and biogenesis; K, transcription; L, replication, recombination and
repair; M, cell wall/membrane/envelop biogenesis; N, cell motility; P, inorganic ion transport and metabolism; S, unknown function; T, signal
transduction mechanisms; U, intracellular trafficking, secretion, and vesicular transport. (C) Fisher's exact test of the proportion of genes in
subset I–III (***p < 0.001). ES, GA, and GD categories are enriched with subset I genes.
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essentiality pattern (Figure 4A and highlighted in Figure S4).
Genes of higher connectivity degrees (indicated by the size of
the filled circle in Figure 4B; cofitness degree, hereafter)
seemed to be over‐represented in the ES category (Figure 4B).
When all genes of the cofitness network were analyzed
(Figure S4), the ES category possessed the highest cofitness
degree and topological coefficient, followed by GD and GA/NE
categories (Tukey HSD test, adj. p< 0.05; Figure 4C). The ES
and GD categories have higher closeness centrality compared
to GA and NE, while the average shortest path length de-
creases in the order of GA, NE, ES, to GD (Tukey HSD test, adj.
p < 0.05; Figure 4C). These network features associated with
ES and GD categories are consistent with their lowest and
highest fitness values, respectively (Figure 3A), implying that
GD genes with significant negative fitness effects have network
features more similar to those genes ES for survival compared
to those NE and GA genes. When these network features were
evaluated for subset I and II, respectively (Figure S6), ES, GD,
GA, and NE categories can be distinguished from each other

for subset I in a similar way as the whole network but less
significant for subset II. For example, ES and GD categories
have a similar cofitness degree, average shortest path length,
closeness centrality, and topological coefficient, and GA and
NE categories also have similar network features, except
higher cofitness degree of GA than NE, for subset II (Figure S6).
Taking together, these results imply that the cofitness network
is more conserved in the ES category, and network rewiring
level is higher in GD, GA, and NE categories among Sino-
rhizobium strains. Therefore, the putative stable core genome80

is not as “still” as expected between sibling strains. Fur-
thermore, the strain‐dependent gene essentiality profiles of
genes shared by five strains revealed that ES and GA cate-
gories intermingled with each other among test sibling strains
(Figure 5A). Therefore, ES and GA genes can be collectively
defined as (quasi‐)essential genes.

Collectively, there was a strain‐dependent variation in the
cofitness networks (Figure 4A) of the Sinorhizobium core ge-
nome. A significant network rewiring was observed for the GA,

Figure 4. Essentiality grades correlate with network connectivity degrees of Sinorhizobium pangenome members. (A) The cofitness network
analysis of Monte Carlo‐based fitness values (Only the top 1% of edges with the strongest relevance are included). The fitness categories are
shown for Module_1. (B) The cofitness network of Module_1. The size of the filled circle is proportional to the connectivity degree in the
cofitness network. The color scheme represents the fitness categories of SF45436 in (A). (C) The cofitness network analysis of connectivity
degree, average shortest path length, closeness centrality, and topological coefficient. Different lowercase letters in (C) indicate significant
differences between means (Tukey HSD test, adj. p < 0.05).
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GD, and NE categories (Figure 4C). These network character-
istics suggest that the minimal genome15 can be viewed as a
highly connected network, and beneficial (GA) or deleterious
(GD) rewiring events are more likely to happen for those nodes
with lower connectivity. In the pangenome context, the “com-
plexity hypothesis” was coined to depict the dependency of
gene horizontal transferability on the network connectivity and
biological process81,82, with the former playing a dominant
role83–85. As many as 92% of gene families in bacteria have
evidence of horizontal transfer86, and the observed variation in
network connectivity and network rewiring level in Sinorhizobium
core genome provides valuable pangenome evolutionary in-
formation for further synthetic biology studies87.

Evolutionary and functional insights into the
cofitness network of Sinorhizobium
Within the cofitness network of five Sinorhizobium strains,
71, 9, 50, and 1553 genes belonging to ES, GA, GD, and
NE categories, respectively, were shared by five strains
(Figure 5A and Supporting Information: Data S1‐2, S1‐3, S1‐
4). When the intermingled ES and GA categories were
combined, the new (quasi‐)essential category harbored 341
genes shared by five strains (Supporting Information:
Data S1‐2). This value is close to the average size of a bac-
terial minimal genome (394 ± 36; 95% confidence interval)70,
implying that this subset may represent the ES genome of the
last common ancestor of extant Sinorhizobium strains. This

Figure 5. A considerable fuzzy essential zone of Sinorhizobium pangenome core. (A) Strain‐dependent gene essentiality of genes shared by
five strains (results for subset I and II are shown in Figure S7). The Maximum Likelihood phylogenetic tree based on 3284 core genes of five test
strains is shown and all branches have 100% bootstrap support. (B, C) COG enrichment analysis of shared (quasi‐)essential genes
(341 essential and growth‐advantage genes) (B), and core genes showing strain‐dependent requirement for growth (C). Red in (B, C) repre-
sents p < 0.05 in Fisher's exact test. The proportion of each COG category and its abundance order among 27,724 genes with COG anno-
tations in the pangenome of five test strains are shown in (B).
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procedure may be generalized to provide a robust minimal
genome reference for both ancestral genome reconstruction
of the last common ancestor of extant sibling species88 and
the bottom‐up design of a synthetic cell87.

Among 27,724 genes with COG annotations in five Sino-
rhizobium strains, enrichment analysis (Figure 5B and Data S1‐2;
Fisher's exact test, p<0.05) showed that these shared (quasi‐)
essential genes were significantly enriched in the COG category
J, M, H, U, F, and D. Shared 50 GD genes were enriched in K
(transcription), P (inorganic ion transport and metabolism), and J
(translation functions) (Supporting Information: Data S1‐3;
Fisher's exact test, p< 0.05). Shared 1553 NE genes were en-
riched in S (unknown function), G (carbohydrate transport and
metabolism), P, T (signal transduction mechanisms), and N (cell
motility) (Supporting Information: Data S1‐4; Fisher's exact test,
p<0.05). There were 1599 genes shared by five strains, which
exhibited a strain‐dependent requirement for growth (Sup-
porting Information: Data S1‐5) and had an enrichment profile
similar to that of shared (quasi‐)essential genes (Figure 5C;
Fisher's exact test, p<0.05).

In the pangenome context of 19 Sinorhizobium strains
(Figure 1A,B), both subset I and II shared by five test strains
showed strain‐dependent gene essentiality and intermingled ES‐
GA categories (Figure S7A and Supporting Information: Data S1‐
2, S1‐3, S1‐4). Gene function enrichment analysis showed that
these shared (quasi‐)essential genes within subset I were sig-
nificantly enriched in the COG category J, M, H, U, and D
(Figure S7B and Supporting Information: Data S1‐2; Fisher's
exact test, p<0.05). These shared (quasi‐)essential genes within
subset II were significantly enriched in the COG category J, M,
and I (Figure S7B and Supporting Information: Data S1‐2;
Fisher's exact test, p<0.05). Furthermore, within the broader
pangenome of 19 Sinorhizobium strains, the shared 50 GD
genes were enriched in P, K, and J, which is identical with that of
the GD genes within the pangenome background of the five test
strains (Figure S8A and Supporting Information: Data S1‐3;
Fisher's exact test, p<0.05). And GD genes within subset I were
enriched in P and J categories, while GD genes within subset II
were enriched in K category (Figure S8B and Supporting In-
formation: Data S1‐3; Fisher's exact test, p<0.05). The fuzzy
essential zone in Sinorhizobium pangenome highlighted differ-
ential roles of various COG categories in bacterial persistence
(quasi‐essential, GD, and NE) under the nutrient‐rich condition
(Figures 5B,C, S7, and S8).

Among the enriched COG categories in the cofitness net-
work, no matter within the pangenome background of the five
test strains or the broader pangenome of the 19 Sinorhizobium
strains, it is noteworthy that J and M types of machinery were
the top two functional categories over‐represented in shared
(quasi‐)essential genes (Figures 5B and S7B), which is also the
same for those showing strain‐dependent requirement for
growth in the core genome of the five test strains (Figure 5C).
Membrane proteins account for half of the cellular membrane
mass and are hypothesized as a driver of the split between
lipids of bacteria and archaea89,90. Earlier in silico evidence also
revealed that envelope proteins evolve faster than water‐soluble
proteins91. In addition to envelope proteins, as shown in a

schematic view of cell envelope biogenesis machineries in the
cofitness network of Sinorhizobium (Figure 6), this portion of the
fuzzy essential zone included genes involved in syntheses of
fatty acids, phospholipids, lipopolysaccharides, and peptido-
glycans, and assembly of outer membrane proteins. Phos-
pholipids are essential components of cell membranes.
Therefore, it is not unexpected that phospholipid synthesis
genes, for example, plsX and plsY, were identified as (quasi‐)
essential genes of Sinorhizobium (Figure 6). This is in line with
the fact that plsX of S. pneumoniae has been proposed to be a
new target for the development of antibacterial ther-
apeutics92,93. Lipopolysaccharides are important components
of the outer membrane of Gram‐negative bacteria, and lpxA,
lpxD, and lptD involved in lipopolysaccharide synthesis can be
used as antibiotic targets94–96. These three and other genes
involved in lipopolysaccharide synthesis were identified as
(quasi‐)essential genes of Sinorhizobium (Figure 6). The fatty
acid synthesis pathway provides precursors for lip-
opolysaccharide and phospholipid syntheses and was found to
be (quasi‐)essential for Sinorhizobium (Figure 6). Similarly, fatty
acid synthesis genes, for example, accABCD, fabD, fabF, and
fabG, were also identified as ES core genes of human pathogen
Streptococcus pyogenes97. Peptidoglycan is a primary com-
ponent of bacterial cell walls, and its synthesis pathway is the
target of numerous antibiotics98. In this work, the peptidoglycan
synthesis pathway was identified as (quasi‐)essential for Sino-
rhizobium (Figure 6). Similarly, peptidoglycan synthesis genes
includingmurB,murC,murD,murE,murF,murG, ddl, andmraY
belong to ES core genes of S. pyogenes in a Tn‐seq study97.
Among these peptidoglycan synthesis genes, murG required
for synthesizing the peptidoglycan precursor Lipid II99 is also
essential for Staphylococcus aureus29, and murJ encoding
peptidoglycan lipid II flippase is indispensable for the viability of
Burkholderia cenocepacia100,101. Collectively, these findings
underscore the indispensability of bacterial cell envelope. All of
these envelope‐related functions can be found in the predicted
last bacterial common ancestor86. Membranes are the boun-
dary between a cell and its biotic/abiotic surroundings, directly
involved in adaptations to new niches and genetic material
exchange9,102,103. Therefore, network analysis of the pan-
genomic Tn‐seq can also provide functional insights into bac-
terial evolutionary mechanisms.

In summary, based on a robust Tn‐seq analysis of in-
dependent mariner transposon insertion libraries of Sino-
rhizobium strains (Figures 1 and 2), pangenomic and network‐
based analyses (Figures 1B, 2–4) allowed identification of a
strain‐dependent variation in the fitness network (harboring ES,
GA, GD, and NE genes) of Sinorhizobium pangenome under a
nutrient‐rich condition. This fitness network is characterized by a
highly connected ES subnetwork and beneficial (GA) and dele-
terious (GD) subnetworks of lower connectivity (Figure 4). Genus
core genes belonging to both the shared and strain‐dependent
essential zones of this fitness network exhibited a similar profile
of functional categories, for example, cell envelop biogenesis
(Figures 5 and 6). The network‐based analyses of the fuzzy es-
sential zone of Sinorhizobium pangenome developed in this work
can be used for any prokaryotes for which a robust Tn‐seq
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procedure can be established. These efforts are significant for
fully understanding the evolution of prokaryote pangenome, the
in silico bipartition of which into ES core and NE accessory
subsets is oversimplified.

MATERIALS AND METHODS
Bacterial strains and growth conditions
The bacterial strains and plasmids used in this study are
summarized in Data S2. Sinorhizobium strains were cultured
in TY medium63 (5 g l−1 tryptone, 3 g l−1 yeast extract, and
0.6 g l−1 CaCl2) supplemented with 30 µgml−1 nalidixic acid
(NA) and 10 µgml−1 trimethoprim (Tmp) at 28°C. Escher-
ichia coli strains harboring vector pSAM_Sf were grown in
Luria‐Bertani (LB) medium104 at 37°C supplemented with
50 µgml−1 carbenicillin (Cb) and 50 µgml−1 kanamycin (Km).

Construction of pSAM_Sf and transposon
insertion library preparation
The mariner‐based transposon suicide delivery vector pSAM_Sf
was retrofitted from a previously described MmeI‐adapted
mariner delivery vector pSAM_Bt61. Briefly, the original Bacter-
oides thetaiotaomicron rpoD promoter region was replaced with
the rpoD promoter fragment amplification using primers PropD‐
F/PropD‐R (Supporting Information: Data S2) from S. fredii
CCBAU45436, and the original erythromycin resistance gene
ermG was replaced with the Km resistance gene by PCR am-
plification using primers kan‐F/kan‐R (Supporting Information:
Data S2) from pRL1063a62. The resulting transposon muta-
genesis vector pSAM_Sf was then transferred into E. coli S17‐1
λpir to obtain a donor strain E. coli strain S17‐1 λpir/pSAM_Sf.
The resulting transposon mutagenesis vector pSAM_Sf was then
transferred into each Sinorhizobium strain for creating a mutant

Figure 6. Cell envelope biogenesis is overrepresented in shared (quasi‐)essential genes and those showing strain‐dependent requirements for
growth. Schematic view of cell envelope biogenesis machineries. Red, essential in all five strains; orange, either essential or growth‐advantage
in all strains; orange proteins marked with *, either essential or growth‐advantage in all strains based on either HMM or Monte Carlo method;
black proteins marked with *, required for strain‐dependent growth. ACC, acetyl‐CoA carboxylase; ACP, acyl carrier protein; BAM, complex
involved in assembling various OMPs into the outer membrane; GlcNAc, N‐acetylglucosamine; LPS, lipopolysaccharide; MurNAc,
N‐acetylmuramic acid; OMP, outer membrane protein.
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library using bi‐parental mating. Three independent mutant li-
braries for each strain were constructed and collected. Specifi-
cally, each of the five wild‐type Sinorhizobium strains (recipient
strain) and the donor strain were individually grown to late ex-
ponential phase (OD600 = 1.2–1.4), and then each recipient strain
and donor strain were transferred and diluted to 1:200 in fresh TY
and LB medium for further culture to mid‐log phase (OD600 =
0.6–0.7), respectively. Each bacterial culture with the defined
optical density was firstly pelleted at 8000 rpm for 3min in 50‐ml
centrifuge tubes, washed once with 50ml NaCl solution (0.85%,
wt/vol), and then mixed in a 2:1 ratio of each recipient strain and
donor strain, and each of the five rhizobia‐E. coli mixtures was
centrifuged and spotted dropwise (50 μl) onto a TY agar plate
without any antibiotics for plasmid transfer. The mating plates
were incubated at 28°C for 36 h. Each resulting transconjugant
mixture was then resuspended in 1ml NaCl solution (0.85%, wt/
vol) and spread equally (100μl mixture) onto each TY agar plate
supplemented with NA, Tmp and Km antibiotics (S. meliloti 2011
rather than the remaining Sinorhizobium strains needed fivefold
concentration of Km for mutant screen since the wild‐type strain
could tolerate 50 µgml−1 of Km antibiotics) and incubated at
28°C to obtain mutants represented by single colonies. Mutant
libraries for each strain were individually scraped and collected to
do subsequent genomic DNA extraction.

Tn‐Seq sample preparation for sequencing
Genomic DNA from individual mutant libraries was extracted
using a TIANamp bacteria DNA kit (TIANGEN). Then 3.5 µg of
gDNA was digested with 3 µl ofMmeI (New England Biolabs) for
2.5 h at 37°C and further treated for 1 h with 2 µl of calf intestinal
alkaline phosphatase (CIP) (New England Biolabs). Double‐
stranded adapter DNA with distinct 12‐bp barcode (Supporting
Information: Data S2) was prepared by mixing single‐stranded
adapter pair (a final concentration of 0.2mM for each adapter) in
1mM Tris·Cl (pH 8.3). This reaction mixture was incubated
at 95°C for 5min and then allowed to slowly cool down
(0.1°C/s). Double‐stranded adapter molecules were ligated to
MmeI‐digested gDNA in a T4 DNA ligation reaction mixture (New
England Biolabs) harboring 25µl of gDNA, 3 µl of T4 DNA ligation
buffer, 1 µl (400 U/μl) of T4 DNA ligase, and 1µl of 0.1mM
double‐stranded adapter. The resulting MmeI‐digested gDNA
with ligated adapter (2 µl) as DNA template was then PCR am-
plified with 22 cycles using Q5 High‐Fidelity DNA polymerase
(New England Biolabs) according to the manufacturer's in-
structions. All PCR products were subject to electrophoresis on
a 1.8% (wt/vol) agarose gel, and the 142‐bp DNA bands were
purified from the excised gel slices using the QIAquick Gel Ex-
traction Kit (Qiagen). The universal transposon primer and
adapter primer were used for each PCR reaction (Supporting
Information: Data S2). These primers contained necessary an-
chor sequences for annealing to oligos present in the flow cell.
Tn‐seq was performed on three independently generated li-
braries for each strain. Single‐end sequencing was performed on
the NextSeq 550AR platform (Annoroad Gene Technology Co.,
Ltd.) using the sequencing primer as shown in Supporting
Information: Data S2.

Gene essentiality analysis of Tn‐seq data
HMM55, Bayesian56, and Monte Carlo57 methods were used to
define ES genes. Briefly, the raw reads were first filtered by
using fqgrep (https://github.com/indraniel/fqgrep) to identify the
adapter or transposon sequence, and then the genomic DNA
(gDNA) (16–17 bp) adjacent to each transposon was extracted.
The resulting sequences after extraction were aligned to the
reference genomes of individual strains using bowtie 2105, al-
lowing for a 1‐bp mismatch in the alignment, resulting in a.sam
output file. The extracted reads mapped to the extreme 5′ and
3′ ends of genes (5% of each end) were excluded from further
analysis to minimize the potential effect of nondisruptive in-
sertions31. The number of reads with a leading “TA” motif
mapped to the genome of each strain was counted, and the
number of transposon insertion sequences inserted into the TA
site was subsequently calculated. Bayesian‐56 and
HMM‐55 based methods have been integrated in the TRANSIT
software66. A .wig format file of the aligned gDNA that can be
recognized by the TRANSIT software66 was generated from
the .sam format file using a Python script (summa-
rize_mappings.py, https://github.com/elijweiss/Tn-seq). The
data were then smoothed by using locally weighted LOESS
regression and normalized by using the TTR (trimmed total
reads) method with default parameters in TRANSIT software66.
ES genes were identified by Bayesian‐ and HMM‐based
methods with default parameters. The HMM‐based method
also assigns GD, GA, and NE states to genes66. For the Monte
Carlo method57, 2000 “Expected” pseudodatasets were gen-
erated by randomly assigning the read counts from all insertion
events to all available TA sites in the genome. Then differential
mutant abundance between the “Observed” data set and
the “Expected” pseudodatasets (fitness value) was calculated
as log2(Fold change) using DESeq2 package106. ES genes
were identified for those with log2(Fold change) <−1 (ad-
justed. p< 0.05).

Bioinformatic procedures in Sinorhizobium
pangenome analysis
Homologous genes among Sinorhizobium strains were identified
by OrthoFinder with default parameters (‐M msa ‐a 40)107. Using
the 1667 core genes shared by 19 Sinorhizobium strains, and
Ensifer adhaerens Casida A, a species phylogenetic tree (max-
imum likelihood) was constructed using RaxML108 with the
PROTGAMMAAUTO setting using 250 bootstrap replicates.
Pangenome subsets of Sinorhizobium strains were defined as
follows: Subset I, genes shared by 19 strains; Subset II, genes
shared by 2 to 18 strains; Subset III, strain‐specific genes. COG,
GO, and KEGG annotation information for all genes of five Si-
norhizobium strains was determined by the eggNOG 4.5 data-
base109. Based on the fitness values generated by the Monte
Carlo method, Pearson's correlation coefficient between shared
genes of five strains was calculated, resulting in a
3284× 3284 gene versus gene matrices. The network correlation
threshold (Pearson's r>0.91) was detected by the RMT‐based
approach75–78. The retained gene pairs were used as edges to
construct the cofitness network consisting of 3284 genes and
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228,134 edges. The cofitness network analyses were carried out
using an igraph R package110 and Cytoscape 3.7.0111, including
network metrics such as connectivity degree (which reflects the
quantity of links a node has to others), average shortest path
length (denoting the mean steps required to traverse the shortest
paths between all node pairs), closeness centrality (derived from
the inverse of the aggregate shortest path lengths from a specific
node to every other node within the graph), and the topological
coefficient (evaluating the extent to which a node shares its
neighbors with other nodes). Tukey HSD test for fitness com-
parison and the cofitness network metrics analysis were carried
out using the agricolae R package112. Gene function enrichment
analysis was carried out using Fisher's exact test, employing the
standard R function “fisher.test”. Additionally, enrichment anal-
ysis was performed for the proportion of subset I‐III genes be-
longing to ES, GA, GD and NE categories by Fisher's exact test
and Z test. The Z test calculates the z‐score value through 5000
random simulations, thereby determining the p value (two‐tailed)
modeled on a Gaussian distribution113.
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